Print button

Abstract EANA2025-34



Advancing Astrobiology: Integrative Field-to-Lab Approaches to Unravel Microbial Resilience and Biosignature Preservation in Space and Mars Analog Environments

R. de la Torre Noetzel (1), R. Villamuera del Sordo (1), S. Gusi-Martínez (1), M.V. Ortega-García (1) S. Tapia (2) , O. Bassy (3), S. Perez (4), E. Mateo-Martí (5), J.M. Frías (6), J. C. Cabria (1), A. Cassaro (7), F. d’Alo (7), S. Reipert (8), J.-P.P. de Vera (9), M. Baqué (10), M. R. López (2), L.G. Sancho (11)
1 INTA, National Institute for Aerospace Technology, Madrid, Spain. torrenr@inta.es 2 University of Málaga, Málaga, Spain 3 ISDEFE (As External Consultant for INTA), Madrid, Spain 4 Instituto Arrhenius, Arequipa, Perú 5 Centro de Astrobiología (CAB) CSIC-INTA, Madrid, Spain 6 IGEO-CSIC-UCM, Madrid, Spain 7 University of Tuscia, Viterbo, Italy 8 University of Vienna, Austria 9 German Aerospace Center (DLR), Space Operations and Astronaut Training, MUSC, Köln, Germany 10 German Aerospace Center (DLR), Berlin, Germany 11 UCM, Univ. Complutense Madrid, Madrid, Spain


Astrobiology's quest to understand life's resilience beyond Earth necessitates comprehensive, multidisciplinary investigations from the field to the laboratory and into space. Building upon prior studies on extremophile lichens and bacteria from Mars analog sites [1], our current research integrates novel molecular biology techniques and microbiome analyses to deepen insights into microbial survival strategies under simulated extraterrestrial conditions. We conducted extensive ground-based simulations replicating space UV radiation, vacuum, and Mars-like atmospheric parameters in collaboration with DLR and CAB-INTA [2, 3], assessing biological and biomolecular responses. The new data reveal significant shifts in gene expression profiles, including upregulation of DNA repair, antioxidative, and stress-response pathways, alongside alterations in microbiome composition indicative of adaptive microbial community restructuring. Morphological and ultrastructural analyses via electron microscopy, complemented by Raman spectroscopy, confirm the preservation of key biosignatures post-exposure [4], while molecular markers demonstrate resilience at the genetic and metabolic levels. These findings not only substantiate the robustness of selected extremophiles in harsh environments but also highlight their potential as primary targets for biosignature detection in future space missions. By integrating field Mars analog samples, molecular biology, microbiome dynamics, and space simulation data, our approach offers a comprehensive framework for assessing life's limits and the detectability of biosignatures beyond Earth. This work paves the way for designing more resilient biological payloads and enhances our capability to interpret extraterrestrial biosignatures, thereby propelling astrobiology into a new era of discovery from the field to the cosmos.

 

References

 [1] de la Torre Noetzel, M.R., Lopez-Ramirez, M.R., Bassy, O., M.V. Ortega-García, Sancho, L.G., Reipert, S., Martinez-Frias, J., Backé, M. (2023). Search of life on Mars: effects of Mars simulated environment on lichens of Mars analog areas. EANA Congress 2023 (29), Madrid, Spain.

[2] de Vera, J.-P., Schulze-Makuch, D., Khan, A., Lorek, A., Koncz, A., Möhlmann, D. and Spohn, T. (2014). Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planetary and Space Science 98, 182-190.

[3] E. Mateo-Martí*, O. Prieto-Ballesteros, J. M. Sobrado, J. Gómez-Elvira and J. A. Martín-Gago (2006) A chamber for studying planetary environments and its applications to astrobiology. Measurement and Science Technology 17, 2274-2280.

[4] Baqué, M., Backhaus, T., Meeßen, J., and de Vera, J.P. (2022). Biosignature stability in space enables their use for life detection on Mars. Science Advances, 8 (36), eabn7412 (1-12). 10.1126/sciadv.abn7412.